# RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

**B.A./B.SC. SECOND SEMESTER EXAMINATION, MAY-JUNE 2013** 

**FIRST YEAR** 

CHEMISTRY (Honours)

Date : 20/5/2013 Time : 11 am – 1 pm

Paper : II

Full Marks : 50

[2]

[3]

## [Use separate Answer Books for each group]

# Group – A

#### (Attempt one question from each unit)

#### Unit – I

- a) Write down the Kelvin-Planck and the Clausius statements about the second law of 1. thermodynamics and hence show that the two statements are equivalent. [1+1+4]
  - b) Define Joule-Thomson Coefficient ( $\mu_{rr}$ ). Although Joule-Thomson throttling process in an isenthalpic process but an isenthalpic T versus P curve is not the graph of a throttling process explain. [1+2]

c) Derive from 1<sup>st</sup> and 2<sup>nd</sup> law 
$$\left(\frac{\partial E}{\partial V}\right)_{T} = T\frac{\alpha}{\beta} - P$$
 where  $\alpha, \beta$  are coefficient of thermal expansion and isothermal compression, respectively. [4]

isothermal compression, respectively.

2. a) Show that, 
$$\left\lfloor \frac{\partial ({}^{G}_{T})}{\partial ({}^{I}_{T})} \right\rfloor_{P} = H$$
 where the terms have their usual significance. [3]

- b) Prove that two reversible adiabatic paths can never cross.
- c) The change in Gibbs energy of a certain constant pressure process was found to fit the expression  $\Delta G_{I} = -73.1 + 42.8 \left( \frac{T_{K}}{K} \right)$ . Calculate the value of  $\Delta S$  for the process. [3]
- d) Assuming all gases ideal, calculate the work invested, the heat dissipated and the change of entropy when 100 lit of air at 1 atm pressure and 298 K are separated isothermally and reversibly into 79 lit of nitrogen and 21 lit of oxygen measured at 1atm pressure and 298 K. [3]
- e) Give a process for which  $\Delta G = 0$ i)

i) 
$$\Delta S = 0$$
 [1+1]

State all necessary conditions or restrictions clearly.

#### Unit – II

- a) If  $\psi$  is a normalized wave function, what is its SI unit for ID particle in a box? What do you mean 3. by Normalization Constant? [2]
  - b) Show that  $\hat{p}_{x}$  is hermitian.

c) What is Compton effect? "Compton effect provides an excellent illustrations of the uncertainty principle"-explain. [1+2]

d) The wavefunction  $\psi$  of a certain system is the linear combination  $\psi = \left(\frac{1}{4}\right)^{\frac{1}{2}} \psi_1 + \left(\frac{3}{4}\right)^{\frac{1}{2}} \psi_2$  where

 $\psi_1$  and  $\psi_2$  are energy eigenfunctions with (nondegenerate) energy eigenvalues  $E_1$  and  $E_2$ respectively. What is the probability that the system energy will be observed to be  $E_1$ ? [3] [1]

- e) Verify that  $\nabla^2$  is linear.
- 4. a) Show that if two observables are to have simultaneously precise defined values, then their corresponding operators must commute. [3]

b) Suppose a particle in a 3D cubic box of length 'a' has an energy of  $\frac{3h^2}{2ma^2}$ . How many states lie

in this range? Also tell the number of energy levels in this range?

c) If a hexatriens molecule absorbs light of 2500Å to transfer a  $\pi$  electron from n = 1 to n = 2, what is the average bond length of a C – C bond? [2]

[3]

[2+1+1]

[2]

- d) Consider a particle with quantum number n moving in a one dimensional box of length  $\ell$ .
  - i) Determine the probability of finding the particle in the left quarter of the box.
  - ii) For what value of n is this probability a maximum?
  - iii) What is the limit of this probability for  $n \rightarrow \infty$ ?

### <u>Group – B</u>

(Answer one question form each unit)

#### <u>Unit - I</u>

5. a) What difference in reactivity with respect to nucleophilic substitution, would you expect between the compounds in each of the following pairs : [1<sup>1</sup>/<sub>2</sub>+1<sup>1</sup>/<sub>2</sub>]



- b) Convert (R)-2-chlorobutane to (S)-2-chlorobutane.
- c) Predict the product with stereochemistry, if appropriate, and write mechanism in each case  $[2\times4]$



- d) Threo-1, 2-diphenyl-1-bromopropane reacts with base, ten times faster than erythro isomer. Explain. [2]
- 6. a) Benzyl chloride reacts with  $I^{(-)}$  ion almost at the same rate as methyl chloride, though the former substrate has a large  $\alpha$ -substituent —Explain. [2]

b) In addition of HBr to 3,3-dimethyl but-1-ene, the following results ae observed :

 $Me_{3}CCH = CH_{2} + HBr \rightarrow Me_{2}C(Br)CHMe_{2}(A) + Me_{3}CCH(Br)Me(B) + Me_{3}CCH_{2}CH_{2}Br(C)$ 

|               | А     | В     | С    |
|---------------|-------|-------|------|
| No peroxide   | 71%   | 29%   | none |
| With peroxide | trace | trace | 100% |

i) Explain why there is a different product distribution under the different sets of conditions.

ii) Write a detailed mechanism for each reaction that explains the origin of all products. [4]c) Identify the products in each case :

i) 
$$\underbrace{NBS}_{\text{peroxide}} A \xrightarrow{\text{base}} B$$

2

ii) 
$$\bigwedge^{Cl} \xrightarrow{\text{Sia}_2\text{BH}} A \xrightarrow{\text{HO}^{(-)}} [B] \longrightarrow C$$
 [2+2]

[2]

[2]

[1]

[2]

d) What kind of elimination does the following reaction follow? Write mechanism.



e) Solvolysis of  $(+) - C_6H_5CHMeCl$  in acetone water (4:1) leads to 98% racemisation while  $(+) - C_6H_{13}CHMeCl$  leads to only 34% racemisation —explain. [3]

#### Unit - II

7. a) Write IUPAC name of each of the following compounds :

i) MeO O ii) Me Me [2]

- b) Arrange the following carbanions in order of increasing stability with proper justification. [2]  $\bar{C}H_2NO_2$ ,  $\bar{C}H_2COCH_3$ ,  $\bar{C}H_2CO_2Et$
- c) The azo-compound dibenzyldiazene (PhCH<sub>2</sub>N=N–CH<sub>2</sub>Ph) decomposes thermally to give nitrogen at a faster rate than di-t-butyldiazene (Me<sub>3</sub>C–N=N–CMe<sub>3</sub>). Explain. [2]
- d) Which compound of following pair has greater enol content? Explain.

- e) Cis–2–butene when photolysed with  $CH_2N_2$  in  $C_3F_8$  solvent, reaction becomes stereoselective explain the reaction with products. [2]
- 8. a) Arrange, with reason, the following isomeric amines in increasing order of basicity [2]

| .OMe   |   |           | CH <sub>2</sub> NH <sub>2</sub> | NH <sub>2</sub> |
|--------|---|-----------|---------------------------------|-----------------|
|        |   | $\bigcap$ |                                 |                 |
| ĮOJ    | ; |           | ;                               |                 |
| $H_2N$ |   | HO > >    | HO                              | $-CH_2$         |

b) Propose a mechanism of the following reaction on the basis of the given experimental evidence. [2]

$$\begin{array}{ccc}
Cl & aq. EtOH \\
Ph & CH_3 & Ph \\
Ph & CH_3 & aq. EtOH \\
Ph & Cl & Ph \\
Ph & Cl & Ph \\
\end{array}$$

[Given  $\frac{K_{\rm H}}{K_{\rm D}} \approx 1.2$ ]

- c) Draw orbital picture of triplet carbene.
- d) Why cyclopropylmethyl cations are more stable than benzyl cation?
- e) Triplet carbene adds to E– and z– alkene with loss of stereochemical integrity. Explain with suitable example. [3]

### 80衆Q